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Abstract

Methods of testing aircraft for departures range from
simple, single-parameter criteria to complex, in-flight
departure resistance maneuvers. These methods are
useful for predicting departure characteristics, but
single-parameter methods may be limited in accuracy
because of simplifying assumptions made in their
derivation. Also, in-flight or simulation testing of
departure resistance maneuvers can be limited by the
small number of conditions tested. These limitations
increase at high angles of attack where the dynamics of
the aircraft are more complex. This paper presents a
method for using genetic algorithms to augment
traditional evaluation criteria. Quasi-random control
inputs are generated by a genetic algorithm for a high
fidelity X-31 simulation. Each input is evaluated to
determine if it causes a departure. The result of the
genetic-algorithm-based search is a population, or set, of
control input combinations that lead to uncontrolled
flight conditions in the simulation. Recognizing possible
differences and simplifications between simulation
models and the real aircraft, the results show that the
method used is effective for finding possible departures
caused by inertial coupling and aerodynamic
asymmetries. Simulation data are used to show the
results of the genetic algorithm search.
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1/rad

Cnβdyn
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stability axis directional stability 
parameter, 1/rad

yawing moment coefficient for zero 
sideslip

Ixx moment of inertia about the aircraft X 
axis, slug ft2

Izz moment of inertia about the aircraft Z axis, 
slug ft2

Lat Stk lateral stick deflection, %max

LCDP lateral control departure parameter, 1/rad

Long Stk longitudinal stick deflection, %max

inertial coupling-induced pitching 
moment, 

p body axis roll rate, deg/sec

pvv velocity vector roll rate, deg/sec

q body axis pitch rate, deg/sec

r body axis yaw rate, deg/sec

α angle of attack, deg

angle of attack rate, deg/sec

sideslip angle, deg

sideslip rate, deg/sec

change in yawing moment coefficient for 
zero sideslip

Introduction

Departure resistance testing is one of the most
difficult tasks to accomplish when testing highly
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Figure 1. The X-31 aircraft.
nonlinear systems, such as modern fighter aircraft, and
presents a challenging problem for system designers.
Departure susceptibility has increased as fighters have
become more agile.1 Flight control system designers
must make a trade between taking advantage of
available control power to achieve maximum agility and
ensuring controllability and departure resistance. To
insure adequate departure resistance, the aircraft is
flown with a margin of safety away from conditions that
could invoke departure, reducing the available
maneuverability of the aircraft. These boundaries are
calculated using several techniques derived to quantify
the static and dynamic stability characteristics and the
departure resistance of the aircraft. 

Some examples of the simple single-parameter
criteria most often used to determine the departure
resistance  characteristics  of a design include 2,

or the dynamic directional stability parameter; LCDP 2,
or lateral control departure parameter; and 3, or
stability axis directional stability parameter. Although
these parameters have been established as good
prediction methods4 and offer some insight into the
characteristics of a given aircraft, they have not
demonstrated consistent correlation with flight test data
to be considered totally reliable3, especially for high-
angle-of-attack, , flight conditions.5 These criteria
involve using simplifying assumptions related to
linearization of the equations of motion, which could
lead to inaccurate conclusions. Efforts have been made
to improve upon these criteria with some success, but
control system influences were not taken into account.3 

To include the flight control system influences,
nonlinear simulations are often used to test for aircraft
departure susceptibility. Departure resistance is
evaluated by simulating highly dynamic maneuvers
designed to test the limits of the system. This procedure
usually involves the use of a basic set of maneuvers
(clinicals)6, such as spins and rapid inputs. However,
these maneuvers cannot completely test the capabilities
of the aircraft for every possible flight condition and
control input combination. An infinite number of
possible input combinations exists.

To augment these simulation tests, an optimization or
search technique is needed to locate possible control
inputs leading to departed, or uncontrolled, conditions.
Optimization could involve maximizing some parameter

Cnβdyn

Cnβs

α
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set, such as a combination of aircraft states, to represent
a departed flight condition. This paper describes a
method for using genetic algorithms to augment
traditional evaluation techniques. Genetic algorithm
search techniques represent one example of an
optimization technique that can search a solution space
in a quasi-random fashion. Such techniques lend
themselves well to the application of complex system
testing. 

Aircraft Description

Figure 1 shows the X-31 Enhanced Fighter
Maneuverability demonstrator aircraft. This aircraft was
designed to test the poststall portion of the flight
envelope for fighter aircraft. One goal of the project was
to test the possible tactical and agility benefits available
from fully integrated thrust vectoring in the slow speed
arena up to 70° angle of attack. The aerodynamics in
poststall flight involve very nonlinear effects from
vortex shedding and other phenomena, making control
of the aircraft in this flight regime difficult. This
difficulty is particularly true for precise maneuvers, such
as tracking or nose pointing. 

The X-31 flight control system was designed using
modern control theory with full state feedback. The high
degree of complexity of the flight control system and the
nonlinear characteristics of poststall flight make testing
onautics and Astronautics



              
for departure prone areas of the flight envelope difficult,
making the X-31 aircraft an ideal candidate for this
study. 

Genetic Algorithms

Genetic algorithms are a structured random search
technique based on evolutionary programming
principles that mimic modern representations of
biological evolution. The Darwinian concept of
“survival of the fittest” and a structured random
information exchange among a population of artificial
chromosomes, or binary strings, is used for the search
procedure. Genetic algorithms differ from numerical
search methods used for optimization for several
reasons. First, they work with a coding of the parameter
set, not the parameters themselves. Second, they search
from a population of possible solutions instead of a
single point. Third, they use probabilistic rules of
transition instead of deterministic rules. For example,
genetic algorithms do not require that first and second
derivative data be calculated for the fitness function with
respect to the independent variables. The majority of
deterministic methods rely on these data to guide the
search.

Genetic algorithms require that the parameter set to be
optimized be coded into a finite length string. For this
example, a search for possible control input
combinations leading to a departed flight condition
requires that the control inputs be coded into a form the
genetic algorithm can operate on. One way of doing this
is to represent the control inputs as binary strings of a
finite length. Additional details regarding binary
conversion of control inputs is provided in the
Experimental Method section. An initial set, or
population, of a given number of these possible input
combinations would form an initial set of inputs to
begin the genetic search. These strings are then
evaluated using a fitness function, and the resulting
value is used to determine which strings, or control
input combinations, are operated on by the genetic
algorithm. 

A population size of 100 input strings was used for
this study based on suggestions from reference 7.
Genetic algorithms work iteration by iteration, operating
on a population of strings. This operation is similar to
natural population growth, where each generation
successively evolves into the next generation through

reproduction. This approach varies greatly from
traditional optimization techniques that search from
point to point using some deterministic transition rule,
such as a gradient. For this discussion, this evolutionary
process will be referred to as the genetic process. For
simple genetic algorithms, the process is made up of
three operators called selection, crossover, and
mutation.

Selection evaluates each binary string according to a
fitness value. Binary strings with higher fitness values
are selected for combination with other superior strings
to form a new population. Selection makes sure that the
characteristics of strings with the highest fitness values
are passed to the next generation. For this study,
tournament selection is used to select the strings used to
form the new population. Tournament selection allows
the best strings to be mated with other superior strings a
number of times that is proportionate to fitness value
until a new population of strings is formed that equals
the total number of strings available in the initial
population. More detail on different selection methods
is available in reference 7. This reference also provides a
good introduction to genetic algorithms. 

Crossover is the process by which superior strings are
joined together to form a new string and consists of
three steps. First, the newly selected strings are paired
together at random. Next, an integer position along
every pair of strings is selected as the crossover point.
Finally, based on a probability of crossover, the paired
strings undergo crossover at the integer position along
the string. In other words, the first section of one string
of the pair is combined with the last section of the other
string from the pair and vise-versa. This combining
process results in a new pair of strings that shares
characteristics of the original pair. The crossover
probability of 60 percent used in this study corresponds
to 60 percent of the strings being crossed over and
40 percent being left intact. This value is variable and
depends on the problem being addressed. Crossover
insures that characteristics of the most fit binary strings
are passed on to subsequent generations, while still
allowing new structures to enter into the search space.
Selection and crossover give genetic algorithms most of
their search power.8 The use of this process is the
distinguishing characteristic of genetic algorithms. 

Next, the population of binary strings that is formed
from the selection and crossover process is operated on
by mutation. Mutation involves switching individual
3
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bits in the string according to a mutation probability
value. For instance, a mutation probability of 0.1 would
indicate that 10 out of 100 bits in a binary string would
be switched. This process introduces random changes
into the solution space, reducing the possibility that the
genetic algorithm will find a local minimum or
maximum instead of the global optimal solution.
Mutation also allows the search to include binary strings
that may not be found by the crossover process.
Mutation is useful to the genetic process, but
excessively high mutation probabilities cause the
genetic algorithm to represent a random search of the
possible solution space. High mutation rates can also
destroy the genetic information that is usually passed to
the next generation through the crossover process.

After the initial population has undergone all three
steps of the genetic process, a new population of strings
will exist. The new population is evaluated to find the
fitness value for each binary string in the population,
and the steps are repeated. Each iteration of the genetic

process, including the fitness evaluation, is referred to as
one generation. The genetic process is stopped after the
average fitness value of the whole population is close to
the best fitness value of the best binary string. 

Genetic algorithms were originally developed by
Holland.9 They have since been applied to many
practical problems relevant to aerospace vehicles.10–14

Many types of genetic algorithms exist, but only the
simple form described here was used in this study. Koza
provides an advanced presentation of genetic algorithms
and evolutionary programming concepts.15

Experimental Method

To test the ability of genetic search techniques to
determine control inputs that could lead to departure, a
program was written to convert a time history of control
inputs into a format that could be manipulated by the
genetic algorithm code. Table 1 contains all the possible
control input combinations considered for this study and
4
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Table 1. Binary representation possible stick input combinations 5-bit string system.

Inputs*

Bit string
Lateral stick, 

% max
Longitudinal 
stick, % max

Rudder pedal, 
%max Descriptions

00000 0 0 0 No deflection

00001 0 0 0 No deflection

00010 0 0 0 No deflection

00011 0.5 0 0 Half lat stk

00100 0 0.5 0 Half long stk

00101 0 0 0.5 Half rudder

00110 –1 0 0 – Lat stk

00111 1 0 0 Lat stk

01000 0 –1 0 – Long stk

01001 0 1 0 Long stk

01010 0 0 –1 – Rudder

01011 0 0 1 Rudder

01100 –1 –1 0 – Lat stk – Long stk

01101 –1 1 0 – Lat stk + Long stk

01110 1 –1 0 Lat stk – Long stk

01111 1 1 0 Lat stk + Long stk

10000 –1 0 –1 – Lat stk – Rudder



     

Table 1. Continued.

Inputs

 

*

 

Bit string
Lateral stick, 

% max
Longitudinal 
stick, % max

Rudder pedal, 
%max Descriptions

10001 –1 0 1 – Lat stk + Rudder

10010 1 0 –1 Lat stk – Rudder

10011 1 0 1 Lat stk + Rudder

10100 0 –1 –1 – Long stk – Rudder

10101 0 –1 1 – Long stk + Rudder

10110 0 1 –1 Long stk – Rudder

10111 0 1 1 Long stk + Rudder

11000 –1 –1 –1 – Lat stk – Long stk – Rudder

11001 –1 –1 1 – Lat stk – Long stk + Rudder

11010 –1 1 –1 – Lat stk + Long stk – Rudder

11011 –1 1 1 – Lat stk + Long stk + Rudder

11100 1 –1 –1 Lat stk – Long stk – Rudder

11101 1 –1 1 Lat stk – Long stk + Rudder

11110 1 1 –1 Lat stk + Long stk – Rudder

11111 1 1 1 Lat stk + Long stk + Rudder

 

* 

 

Scale factor to maximum control input value (i.e. 0.5 = 50 percent stick deflection).

 

Table 2. Altitudes for trim conditions.

Bit string Altitude for trim, ft

00 10,000

01 20,000

10 30,000

11 40,000

 

Table 3. Angles of attack for trim conditions.

Bit string Angles of attack, deg

000 10

001 20

010 30

011 40

100 50

101 55

110 60

111 70
the corresponding binary string value. These strings
represent the control input values at a given time point.
The controls listed in the table include the longitudinal
and lateral stick position and the rudder pedal position.
Throttle setting was held at maximum power for all the
maneuvers. These 5-bit strings are strung together, one
per second, to represent a control input time history. A
1-sec frequency of control inputs was chosen as a
starting point for this study. A 1-sec input frequency is
high enough to test the controls but still low enough to
remain a realistic input frequency for a pilot.

The flight condition used to trim the simulation was
also coded into a binary format and was included at the
end of each control input string group as an additional
5-bit string. The first two bits in the string represented
trim altitude. The last three represented the trim angle of
attack. Tables 2 and 3 list the possible trim conditions
for the start of the simulation. These flight conditions
were chosen arbitrarily with the 55° angle-of-attack trim
added to augment aerodynamic asymmetry testing.

Figure 2(a) shows a typical bit string representation
for  a  5-sec control input and the resulting input signals, 
5
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including the trim condition. It consists of 25 bits
representing the 5 input strings and 5 additional bits for
the trim condition. By including the trim condition as
part of the string, different points in the flight envelope
are tested for possible departures. The 5-sec input time
was chosen after observing that departures for the
resulting inputs occurred within the first few seconds of
the simulation.

For the simulation of each input, the trim control
values are held until the 1-sec point. Then, the inputs
from the string are used. The controls are held for the
first second of the simulation run to ensure a good trim
is held before the start of the maneuver. Also, the last
control input value input at the 5-sec point is held for
1 sec, yielding the 6-sec total time length shown in
figure 2(b).

To assign a value representing the “level” of departure
caused by each possible control input sequence, a fitness
6
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(a) Binary string representation of the control inputs.
(Controls held at trim value from 0- to 1-sec point of run
and held after last input.)

(b) Stick and rudder inputs as a function of time.

Figure 2. Binary string representation of control input
and resulting time history.
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Time,
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function needed to be designed. This function represents
a departed flight condition as some numerical
combination of the states of the aircraft and is similar to
the objective function used in a standard optimization
problem. The definition of the fitness function can
greatly influence the types of solutions found by the
genetic algorithm because it influences which input
strings survive and which ones do not. The importance
of a well designed fitness function became evident from
the results of this study.

The initial fitness function was as follows:

(1)

where

p = body axis roll rate

q = body axis pitch rate

r = body axis yaw rate

= sideslip

This fitness function was chosen as an initial guess
because departures can involve a combination of these
parameters. Angle of attack was not included because
departures at all angles of attack were of equal interest.
The terms were normalized to equally include positive
and negative values. Also, the fitness was evaluated at
each time step in the simulation, and the maximum
value was taken for the whole simulation run. The
maximum for the whole was taken, so the simulation
could run without any control inputs for a given time
segment if doing so would later lead to an increased
fitness value.

After the genetic algorithm was run for 100
generations, it was noticed that all the control input
combinations in the final population involved full lateral
stick inputs held for the entire simulation run. The full
lateral inputs caused the fitness values to be dominated
by the roll rate term in the fitness function because roll
rate in the X-31 flight control system at low angles of
attack can be commanded to 240 deg/sec, which is much
larger in magnitude than the maximum values of the
other terms in the equation. The sensitivity to roll rate
indicated a need for a new fitness function that would
equally weigh all the terms in the equation because
holding constant lateral control input resulted in a trivial
maneuver that was not a departure.

Fitness p q r β,,,( ) p q r β+ + +=

β

onautics and Astronautics



        
Weights were added to the original fitness function,
giving roll, yaw, pitch, and sideslip values similar
relative magnitudes. This was done to more adequately
represent a departed condition in the simulation. Despite
changes in maximum available commanded values of
these states because of angle of attack in the flight
controls, the revised fitness function resulted in more
realistic results. The resulting equation is shown below.

(2)

Figure 3 shows the best and average values for this
fitness for a simulation run of a population of
100 strings for 50 generations. This plot shows how
quickly the genetic search technique finds fitness values
very close to the best input and drives the average
population fitness toward this goal by the genetic
process. 

Results and Discussion

The results of the genetic search are described next.
Only the resulting input strings with the best fitness
values were evaluated although a whole population of
strings exists that could represent other departures at the

end of the genetic search. Evaluation of all the strings in
the final population is beyond the scope of this study.

Inertial Coupling Departure

The initial results from the genetic investigation of the
X-31 simulation led to a departure mode that is
consistent with many high-performance fighter aircraft:
an inertial coupling departure. The large pitch and yaw
inertia as compared to small roll inertia for modern
fighters leads to typical inertial coupling problems for
high roll rate maneuvers. 

To aid in visualizing this effect, the fuselage heavy
mass distribution of a fighter is represented as a
dumbbell with the mass concentrated at the two ends.
As the airplane rolls about the velocity vector, the
dumbbell tends to pitch up to align itself perpendicular
to the velocity vector roll axis. The resulting pitching
moment can be powerful enough to overcome the
maximum available nosedown pitch control of the flight
controls, resulting in a departure. The pitching moment
induced by this effect can be calculated from the
following equation:15

(3)

Fitness p q r β,,,( ) 0.01 p 0.1 q 0.1 r β+ + +=

Mic Izz Ixx–( ) pvv=
2

2αsin
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F i g u r e  3 .  A v e r a g e  a n d  b e s t  fi t n e s s  f o r  p o p u l a t i o n  a s  a  f u n c t i o n  o f  g e n e r a t i o n .
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(a) Binary string representation of the control inputs.
(Controls held at trim value from 0- to 1-sec point of run
and held after last input.)

(b) Stick and rudder inputs.

Figure 4. Inertial coupling departure inputs.

Figure 5. Longitudinal states from inertial coupling
departure.
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where

= inertial coupling-induced pitching moment

= moment of inertia about the aircraft x axis

= moment of inertia about the aircraft z axis

= velocity vector roll rate

= angle of attack

This equation shows how high velocity vector roll
rates, typical of modern fighter aircraft, can translate
into high inertial pitching moments. Similar coupling
can also occur in the yaw axis when roll and pitch rates
inertially couple to increased yaw rate.16

Figures 4, 5, and 6 show the inputs and state time
histories for an inertial coupling departure from
multiple rolls at low angle of attack coupled with a pitch
change. The genetic algorithm search converged on a
trim condition of 10° angle of attack at 30,000 ft and the
control inputs shown in figure 4. The inputs cause the
aircraft to roll at very high rates in both directions at
negative angles of attack. As the roll rate increases to the
maximum of around –160 deg/sec at approximately
3.5 sec into the run, adverse sideslip increases. This
increase indicates that the roll and yaw rates are not
coordinated for the velocity vector roll. 

After the 3-sec point, the pitch control input
commands maximum noseup angle-of-attack rate. This
rate leads to an increase in angle of attack that causes an
inertial coupling departure after the 5-sec point, as
shown by the sudden increase in sideslip, yaw rate, and
pitch rate after about 5.5 sec. Figure 7 shows that the
canard and trailing-edge surfaces are rate limiting
during this departure after about 5.5 sec. In addition, the
yaw thrust-vectoring command is position limited,
indicating the yaw-vectoring command is unable to
command the yaw rate needed to overcome the
departure dynamics.

The pitch-up during the departure is in the same
direction as commanded angle of attack but reaches a
higher value than is commanded by the flight controls.
The maximum commanded angle-of-attack rate is
25 deg/sec in the X-31 flight control system, but this
series of inputs yields a maximum angle-of-attack rate
of over 140 deg/sec at about 6 sec (fig. 8). 

Mic

Ixx

Izz

pvv

α
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Figure 6. Lateral–directional states from inertial
coupling departure.

Figure 7. Control surface deflections from inertial
coupling departure.
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For the velocity vector roll to be coordinated, body
axis yaw rate and roll rate must be related by the
following expression:

(4)

Otherwise, sideslip angle will build according to the
following equation:

(5)

Figure 8 shows that the change in sideslip rate, ,
builds up to a value above 120 deg/sec at the point
where the departure occurs around 5 sec. The  sideslip
indicates that roll and yaw rates are not coordinated, and
that the flight control system is unable to achieve the
desired zero-sideslip angle.

Figure 8. Angle-of-attack and sideslip rates from inertial
coupling departure.

Inertial coupling departures have been well
documented17–21 and have led to restrictions in the
number of consecutive rolls some modern fighters can
perform. The X-31 aircraft was limited to one 360° roll
at low angles of attack during its flight tests.* This
departure mode indicates that the genetic search was
able to locate a possible departure prone condition
despite the fact that the X-31 flight control system was
designed to compensate for inertial and gyroscopic
coupling.22

* Bayati, J.E., “Temporary Operating Procedure for Rolling
Performance,” Rockwell International Temporary Operations
Procedure Manual for X-31, TFD-90-1220L-15, Oct. 8, 1990. Contact
the author for queries regarding this manual.
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(a) String representation of the control inputs. (Controls
held at trim value from 0- to 1-sec point of run and held
after last input.)

(b) Stick and rudder inputs.

Figure 10. Aerodynamic asymmetry departure inputs.
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Aerodynamic Asymmetry Departure

Because inertial coupling departures are well known
for modern fighters, further analysis was performed to
see if the genetic search technique could find departure
prone areas in the envelope caused by aerodynamic
asymmetries. To this end, a lateral asymmetry similar to
one found in flight testing of the X-31 aircraft23 was
added to the aerodynamic models of the simulation, and
the genetic algorithm was allowed to search for
departures.

Flight test data showed that an asymmetry existed on
the X-31 aircraft with the worst values occurring at
angles of attack from 60° to 70°. Figure 9 shows
the , or change in yawing moment coefficient for
zero sideslip, values as a function of angle of attack
added into the X-31 aerodata tables. The values added
are slightly different from those found in flight test, but
the effects on the aircraft dynamics should be similar.
These changes were added to the aerodata tables for the
Mach 0.4 and Mach 0.2 breakpoints to test the ability of
the genetic search technique to locate the specific
portion of the flight envelope where the directional
stability change was added. Also, the asymmetries from
the nose vortices on the X-31 aircraft are more
pronounced at low speeds. The same fitness function
from the inertial coupling analysis was used for
consistency.

Figure 10 shows the resulting inputs from the genetic
search for this test case. The search converged on a trim

∆Cno
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Figure 9. Change in yawing moment coefficient for zero
sideslip values added to aerodynamic data.

Angle of
attack,

deg

80

70

60

50

40

30

20
–.02 0 .02 .04 .06

∆Cn0 value added to database
.08 .10

Flight test points

.12 .14

950303
condition of 60° angle of attack at an altitude of
40,000 ft. Figures 11 and 12 show the resulting time
history data from the departure. The departure occurs at
a flight condition that corresponds to the Mach number
and angle of attack where the asymmetry was added,
which demonstrates the ability of the genetic search
technique to locate specific areas of the envelope. 

The inputs indicate that the simulation trims at a high
angle of attack initially. At this high angle-of-attack
condition, the asymmetry creates a yawing moment that
is too great for the controls to overcome, indicated by
the initial yaw rate build up after the start of the
simulation. 

Figure 13 shows that the yaw vectoring immediately
saturates to try to overcome the directional instability.
The flight control system tries to command the angle of
attack to match the longitudinal stick input, taking the
available control deflection from differential trailing
edge and commanding full nosedown symmetric
trailing-edge deflection. This pitch axis priority of the
flight controls allows the yaw rate to increase to almost
0
onautics and Astronautics



Figure 11. Longitudinal states from aerodynamic
asymmetry departure.

Figure 12. Lateral–directional states from aerodynamic
asymmetry departure.
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Figure 13. Control surface deflections from
aerodynamic asymmetry departure.
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Figure 14. Angle-of-attack and sideslip rates from
aerodynamic asymmetry departure.
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70 deg/sec after 2 sec. The asymmetry causes the
proverse sideslip to increase to –10° which increases the
roll rate to over 100 deg/sec after 3 sec. Again, inertial
coupling between the roll and yaw rates results in an
angle of attack increase to over 80° after 5 sec. The
1
American Institute of Aer
sideslip time history also indicates that an unstable
sideslip oscillation is occurring, with an increasing
magnitude of over 30°. Values above 10° are considered
over safe limits according to flight test procedures. 

Figure 14 shows that the rate of angle of attack is
again over the commanded maximum because of the
departure. The change in sideslip also increases to over
–70 deg/sec during the departure.

This simulated departure is similar to an in-flight
departure of the X-31 aircraft during a 2-g, split-S to 60°
1
onautics and Astronautics



angle of attack on flight 2-73. During this in-flight
departure, the yaw-vectoring command was also
position limited. In addition, the angle of attack
increased to over 80°. Data from this in-flight departure
showed that it was triggered by an unmodeled yawing
moment similar to that added into the aerotables for this
study. 

If the same inputs are run through the simulation
without the asymmetry modeled in the aerodata, the
simulation did not depart. The maximum sideslip during
the maneuver was 2°, and the maximum angle of attack
was 60°, indicating that adding the asymmetry caused
the inputs to lead to a departure. As a result, the genetic
search technique demonstrated that it is possible to
depart the aircraft simulation during highly dynamic
maneuvers when these asymmetries are modeled. 

Concluding Remarks

The departure modes found by the genetic search
technique indicate that it can find input combinations
that cause departures in different areas of the envelope.
The following conclusions can be drawn from the
results of this study:

1. Genetic search techniques offer an effective way to
search for departure cases because the algorithm
will run until it finds a departure. The analysis runs
without the user having to guess at possible initial
flight conditions that may be prone to departure.

2. Genetic search techniques can be very sensitive to
the choice of the fitness function. 

3. Departure conditions that may be overlooked by
other departure prediction methods may be found
using the quasi-random search techniques of
genetic algorithms. Also, the method introduced
here includes control system effects in the search.

The following recommendations are made as a result
of this study:

1. Apply genetic search techniques to other high
fidelity simulations to see if similar results are
found.

2. Extend the technique developed in this study to see
if it is applicable for system testing.

3. Study variations of total simulation time, input
frequency, and control input magnitude to
investigate changes in the results.

4. Study variations on the genetic algorithm
parameters, such as crossover probability,
mutation probability, and population size, to
determine how the resulting departures differ.

5. Study other departures in the final population to
determine if certain types of control input
sequences are common between different flight
conditions, indicating what types of inputs can
lead to departures at several points in the envelope. 

6. Study different fitness functions to find what other
types of departures can be found. For example, the
removal of roll rate from the fitness used may
exclude inertial coupling departures from the final
population.
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